除了鈦及其鈦合金外,也有研究圍繞其他金屬漿料展開,以確定其潛在的應用。在2019年,國內的長沙墨科瑞團隊就曾另辟蹊徑,研發(fā)出了一種特殊的“金屬粘土”,在“間接金屬3D打印”領域首創(chuàng)出了DDM新技術。 “金屬粘土”由特殊成分組合的金屬粉末與特種高分子粘結劑混合而成,外觀與普通陶泥相似,能夠塑形和雕刻。墨科瑞團隊采用普通廉價的陶泥3D打印機將這種“金屬粘土”打印形成生坯,并通過燒結獲得力學性能。由于打印過程無須加熱,該模式被稱為DDM( Direct Deposition Modeling )或NTDM( Normal Temperature Deposition Modeling )技術。利用DDM模式生產的金屬成品除了高強度之外,還可以具有超級耐腐蝕性能(可以達到不銹鋼的2-5倍);通過調整配方,可以生產出形狀復雜的超級耐磨件(比如,可以生產硬度HRC62左右的金屬陶瓷耐磨件)。這些高附加值性能是現有的“間接金屬3D打印技術”無法達到的,具有很強的競爭力。
Michielsen等人[7]提出了一種使用DIW技術制備具有中空結構的不銹鋼纖維的方法,在這項研究中,將N-甲基2-吡咯烷酮(M-PYROL)溶解到去離子水作為溶劑,選用聚砜(P-1800 NT 11)用作粘合劑,并將不銹鋼粉末均勻分散到溶液中組成懸浮液。將懸浮液通過同心噴嘴擠出打印,通過非溶劑誘導的相轉化工藝,中空纖維在擠出后固化。這項技術可以逐步成形出精細的連續(xù)圖案且不會變形,所得的生坯不銹鋼中空纖維的外徑在1-4 mm之間,壁厚在200到700 μm之間,具有很高的硬度。
相關參考文獻:
[1] Li J P, Habibovic P, Van Den Doel M, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition[J]. Biomaterials,2007, 28(18): 2810-2820.
[2] Chen Y, Han P, Vandi L J, et al. A biocompatible thermoset polymer binder for direct ink writing of porous titanium scaffolds for bone tissue engineering[J]. Materials Science & Engineering C, 2019, 95: 160-165.
[3] Srivas P K, Kapat K, Dadhich P, et al. Osseointegration assessment of extrusion printed Ti-6Al-4V scaffold towards accelerated skeletal defect healing via tissue in-growth[J]. Bioprinting, 2017, 6: 8-17.
[4] Elsayed H, Rebesan P, Giacomello G, et al. Direct ink writing of porous titanium (Ti6Al4V) lattice structures[J]. Materials Science and Engineering: C, 2019, 103: 109794.
[5] Zhang, X.; Guo, L.; Yang, F.; Volinsky, A. A.; Hostetter, M.; Guo, Z., 3D gel printing of graded TiC-high manganese steel cermet. Journal of Materials Science 2018, 54 (3), 2122-2132.
[6] Yetna N'Jock M, Camposilvan E, Gremillard L, et al. Characterization of 100Cr6 lattice structures produced by robocasting[J]. Materials & Design, 2017, 121: 345-354.
[7] Michielsen B, Chen H, Jacobs M, et al. Preparation of porous stainless steel hollow fibers by robotic fiber deposition[J]. Journal of Membrane Science, 2013, 437: 17-24.
[8] Hong S, Sanchez C, Du H, et al. Fabrication of 3D printed metal structures by use of high-viscosity Cu paste and a screw extruder[J]. Journal of Electronic Materials, 2015, 44(3): 836-841.
[9] Kenel C, Casati N P M, Dunand D C. 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices[J]. Nature Communications, 2019, 10(1): 904.
[10] Shen A, Caldwell D, Ma A W K, et al. Direct write fabrication of high-density parallel silver interconnects[J]. Additive Manufacturing, 2018, 22: 343-350.